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Witten's Identity for Chern-Simons Theory 
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We present a simple heuristic calculational scheme to relate the expectation value 
of Wilson loops in Chern-Simons theory to the Jones polynomial. We consider 
the exponential of the generator of homotopy transformations which produces 
the finite loop deformations that define the crossing change formulas of knot 
polynomials. Applying this operator to the expectation value of Wilson loops for 
an unspecified measure, we find a set of conditions on the measure and the 
regularization such that the Jones polynomial is obtained. 

1. I N T R O D U C T I O N  

Knot theory has recently played an important role in physics. In knot 
theory we study the equivalence classes of  loops under diffeomorphisms 
connected to the identity; hence knot theory can be expected to appear 
naturally in the context of a diffeomorphism-invariant theory that deals with 
loops. Loops are of interest in any gauge theory because the trace of  the 
parallel transport operator around a loop is :a gauge invariant variable, the 
so-called Wilson loop. Prime examples for a diffeomorphism- and gauge- 
invariant theory are topological field theory (Witten, 1989) in three dimen- 
sions and canonical quantum gravity (Rovelli and Smolin, 1988) in four 
dimensions, and in both cases knot theory figures prominently. 

The arguably most intriguing connection between knot theory and field 
theory is encapsulated in Witten's identity (Witten, 1989), which expresses 
the Jones polynomial Jr(q)  as the vacuum expectation value of a Wilson loop 
W~[A] in a Chern-Simons theory, 

(W~[A ])k, N = otw(~)J~(q) (l)  

Let us define both sides of this equation. 
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We consider Chern-Simons theory for an SU(N) connection Aa(x) = 
Ai(x)T i on a three-manifold ~, for which we choose ~ = S 3. Here the T i 
are the generators of the fundamental representation of SU(N) normalized 
according to tr TiT j = ~ ~ij and 

(W~[A])~,N = DA exp ~ Scs[A] W~[A] (2) 

Scs[A] = d3x e "be tr AaOhAc + ~ A~AbAc (3) 

where k ~ Z is the coupling constant. The Chern-Simons action has the 
characteristic property that 

8 1 
8Ai(x----- ~ Scs[A] = ~ e~bcf~c(x) (4) 

where F~,c is the curvature of A~,. 
We define a path to be a continuous, piecewise smooth map ",/: [s, t] --+ 

with nonvanishing tangent ~f(s), and a loop is defined as a closed path, 
~/: [0, 1] ~ E with "r = ~/(1). Loops are allowed to have intersections 
(here we consider only the case of double points). A Wilson loop is defined by 

W~[A] = tr U~(0, 1) ~ tr U~ (5) 

U~(s, t) = P exp du ~ta(u)Aa(~(u)) (6) 

where U~ is the parallel transport operator along the loop ~, and P denotes 
path ordering. The Wilson loops satisfy the following differential equations: 

~ tr U~ = ( ds SAs)83(x, 3~(s)) tr U~(s)F~b(7(s)) (7) 
J 8Ai(x) 

8 
8~a(s) tr U~ "~b(S) tr U~(s)Fab('y(s)) (8) 

where U~(s) is the parallel transport once around the loop from s to s. 
On the right-hand side of Witten's identity (1) we have two constants 

that are determined by the parameters of the Chern-Simons theory, 

iv  
q = exp N + k' ~ = qN-1/N (9) 

The whole expression is directly related to the Kauffman bracket (Kauffman, 
1991) and it is not a diffeomorphism-invariant functional of loops. The 
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Kauffman bracket is defined not for knots in three dimensions, but only for 
knot diagrams. One usually defines invariants of knot diagrams which arise 
from links, i.e., from multiloops ",/: S t X . . -  x S l ~ ~. 

A knot diagram is a regular projection of a loop into a plane together 
with labels that distinguish intersections that arise from overcrossings (+)  
or undercrossings ( - )  (Fig. 1). We also introduce labels for the genuine 
intersection of two lines (X) and for two nonintersecting lines (~). The 
unknot is denoted by (o). When discussing framing we denote a positive 
twist by (oc+), a negative twist by (oc-), the intermediate intersection by 
(oc), and the untwisted line by ('1.). 

The winding number w(',/) is equal to the sum over all crossings in a 
knot diagram counting + 1 for overcrossings and - 1 for undercrossings, and 
it is only a regular isotopy invariant. While w(',/) does not change under small 
deformations, it does depend on the projection, which may introduce all 
arbitrary number of crossings into the knot diagram. This type of projection 
dependence is also called framing dependence. 

The knot polynomial J.y(q) is an ambient isotopy invariant and hence 
does not depend on the projection. It is a Laurent polynomial in one complex 
variable q defined by 

J~ = J.y if ~ -- ~' in three-space (10) 

Jo -- qN __ q -U 
q _ q-1 (11) 

qUj+ _ q - X j _  = (q _ q - ~ ) j •  (12) 

The original Jones polynomial (Jones, 1985) is obtained for N = 2. The 
crossing change formula (or skein relation) (12) allows us to reduce recur- 
sively any knot diagram to the polynomial of the unknot, which is defined 
by (11). As usual, the crossing change formula relates polynomials for pro- 

a) ~ b) 

d=3 + 

. x 
d=2 x 

Fig. 1. (a) Projecting a knot onto a knot diagram; (b) the four crossings in a knot diagram. 
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jected links that differ only in one four-valent diagram, where the knot 
assumes one of the elementary crossings (+), ( - ) ,  or (• 

The right-hand side of Witten's identity, 

K.~(q) = etw~'~)J.c(q) (13) 

is therefore the regular isotopy invariant defined by 

K~ = K~, if "y -- ~' under regular isotopy (14) 

qN _ q -U  
Ko -- q - -  q_~ (15) 

qt/NK+ -- q - l I N K -  = (q -- q -1 )K= (16) 

K~_+ = a-~lK~ (17) 

w h e r e w + -  1 = w• = w_ + 1 andJ~z = J l .  
We have defined all parts of Witten's identity except for how the path 

integral is to be computed. In particular, we did not specify the measure DA.  
This is, of course, the crucial input that determines the outcome of the 
calculation. Let us mention four approaches toward defining the path integral. 

1. First of all, there is Witten's original paper (Witten, 1989), in which 
he proves (1) by arguments from conformal field theory for the 2+ 1 decompo- 
sition of Chern-Simons theory without explicitly defining the measure DA.  
Witten's beautiful argument is convincing, although some of the mathematical 
details still have to be worked out (e.g., Schottenloher, 1993) (which applies 
equally well or even more so to approaches 2-4  below). 

2. A quite unrelated approach is that of standard perturbation theory, in 
which a measure and a gauge fixing are defined explicitly (e.g., Alvarez 
Gaum6 et  aL, 1990; Bar-Natan, 1990; Guadagnini et  al., 1990; Axelrod and 
Singer, 1992). A proof of Witten's identity to all orders has been presented 
in Axelrod and Singer (1993). A recurrent problem in the perturbation theory 
of non-Abelian Chern-Simons theory is to reproduce the shift of k to k + 
N in (9) (Alvarez Gaum6 and Labastida, 1990; Guadagnini, 1993). 

3. At the same time it was realized that geometric deformations of the 
loop inside the path integral are directly related to perturbative results (Smolin, 
1989; Awada, 1990; Cotta-Ramusino et  al., 1990; Kauffman, n.d.). At least 
to first order in 1/k, deformations of the loop lead to the same results as 
perturbation theory, and Witten's identity is satisfied to this order. Into this 
category falls the attempt to solve the analog of the Makeenko-Migdal loop 
equation known from Yang-Mills theory and thereby to obtain Witten's 
identity to all orders in 1/k (Awada, 1990). 

4. An order-by-order analysis in perturbation theory shows that the coef- 
ficients in a 1/k expansion define particular knot invariants (Guadagnini et  
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al., 1990; Bar-Natan, 1990). These knot invariants are closely related to so- 
called Vassiliev invariants (Vassiliev, 1990; Baez, 1992; Bar-Natan, 1992; 
Kauffman, n.d.). Recently, it has been shown (Birman, 1993) that knot polyno- 
mials like the Jones polynomial arise as power series with Vassiliev invariants 
as coefficients. Implicit in this construction seems to be a proof that the 
perturbation series sums up to the Kauffman bracket. 

Each of these approaches has its own merit, since the different techniques 
have led to different, interesting insights into the relation between Chern- 
Simons theory and knot theory. 

The purpose of this paper is to present a formal calculational scheme 
based on loop deformations that allows one to derive Witten's identity to all 
orders in 1/k. As such it can be viewed as an extension of the third, the 
geometric approach. The hope is that since K~(q) is a rather simple function 
of loops, a simple, intuitive argument may arise by focusing on the loop 
dependence of {W~[A]). This is indeed the case. 

Let us give a brief outline of our method. The starting point for our 
construction is the observation that the generator of homotopy transforma- 
tions,/~, applied to 

$~ = {wv[a]) (18) 

reproduces the perturbation expansion to linear order in l/k. We define the 
exponential o f / ) ,  which generates finite deformations of parts of a loop along 
a vector v. Such an operator can, for example, lift one line of a true intersection, 
thereby transforming ( •  to (+),  i.e., for a suitable choice of v we have that 

e~ = $+ (19) 

Under natural assumptions about the path integral and the regularization 
procedure, we derive from the calculation of (ID(v)W~[A]) that 

e~ = aSx + b$= (20) 

for some coefficients a and b. Finally, we show that there exists an essentially 
unique regularization such that from (19) and (20) follow precisely the skein 
relations that define Kv(q) for q = exp(iTr/k), 

Our method must definitely be called formal, since we neither give an 
indirect definition of the path integral of Chern-Simons theory as in approach 
1, nor an explicit definition as in approach 2. We assume that there exists 
an otherwise unspecified measure DA such that (W~[A]) exists. The goal is 
to find a minimal set of assumptions about the measure and regularization 
such that Witten's identity is reproduced. 

This approach also differs from approach 4 in that we do not analyze 
knot invariants at each order, but only the summed series. A common feature 
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is, however, that loops with intersections play a natural role. Naively, this 
should be expected simply because the classes of knots with intersections 
'separate' the classes of nonintersecting knots. However, the great power of 
such a point of view in knot theory was only realized very recently (consider- 
ing the long history of knot theory) in Vassiliev's work (Vassiliev, 1990; 
Birman, 1993). The definition of the Vassiliev invariants makes crucial use 
of intersecting knots, and there is a conjecture that for the first time a complete 
set of knot invariants may be obtained from such invariants (Birman, 1993). 

In physics, a motivation to study knot invariants for loops with intersec- 
tions arises in the study of the loop representation of canonical quantum 
gravity in 3 + 1 dimensions (Rovelli and Smolin, 1988, 1990). It is interesting 
to note that (to the knowledge of the author) an extension of the braid group 
to intersections appeared for the first time in Smolin (1988) and a definition 
of the Jones polynomial based on intersecting braids in Gambini (1992). The 
states in the loop representation are functionals of loops, t~[~q], and the space 
of solutions to the spatial diffeomorphism constraint is the space of knot 
invariants. Loop functionals of noninteresting loops, however, are annihilated 
by the determinant of the metric [which in particular implies that they are 
solutions for arbitrary cosmological constant (Brtigmann and Pullin, 1991)]. 
Nondegenerate solutions to both the diffeomorphism constraint and the 
Wheeler-DeWitt equation of canonical quantum gravity arise for loops with 
a generic triple self-intersection (BrOgmann et al., 1992a). Furthermore, these 
solutions are formally related to the Chern-Simons action (Brtigmann et al., 
1992b), which gives rise to a solution to the constraints (Kodama, 1990) in 
what is known as the connection representation of quantum gravity (Ashtekar, 
1991). In this context an extension of Witten's identity to intersecting loops 
becomes necessary, and has been given up to order 1/k in (Brtigmann et al., 
1992b). As a by-product of our method we find that Witten's identity holds 
(to all orders) for the Jones polynomial of intersecting loops defined in 
Gambini (1992). 

We will proceed as follows. In Section 2, we recall how first-order loop 
deformations of (W~[A]) can be computed and interpreted. In Section 3, we 
introduce the generator of homotopy transformations. In Section 4, we present 
the formal calculation that leads to Witten's identity. We conclude with a 
discussion in Section 5. 

2. FORMAL FIRST-ORDER CALCULATION 

Let us reproduce the type of calculation that shows how loop deforma- 
tions in the Chern-Simons expectation value of Wilson loops lead to a first- 
order result that is consistent with the skein relations that define the Jones 
polynomial. The approach taken here is most closely related to Cotta-Ramus- 
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ino et al. (1990) and Brtigmann et al. (1992b). First we compute the functional 
derivative with respect to the loop of the expectation value of a single Wilson 
loop W,: 

8 
a.qa(s ) (W~[A]) 

= DAexp  ~Scs[A]  ~ t r U ,  

= ~qb(s) DA exp ~ Scs[A] F~h('q(s)) tr Un(s)TJ 

(21) 

(22) 

- k %bc'iqh(S) DA ~-ff-~ e x p ~  Scs[A] tr U~(s)T J (23) 

k ~abcqqb(S) DA exp ~ Scs[A] ~ tr U~(s)T j 

k eabc'ilb(S) dt q((t)~3('q(s), ~q(t)) 

• DA exp ~ Scs[a] tr U~(s, t)TJU~(t, s)T j 

i ( k e"~c~b(s) dt "fi"(t)83('q(s), "q(t)) (tr (~q(s, t) 

(24) 

(25) 

, ) tr Un(t, s)) - ~ {tr U-n) 

(26) 

Here we have used (8), (4), and (7) in (22), (23), and (25), respectively. The 
last step is specific to SU(N), for which 

(27) 

The pretty result is that the loop variation o f  (W~) can be again expressed 
in terms of  expectation values of  Wilson loops. This happens precisely because 
the Chern-Simons action has the property (4), which is not true for a generic 
weight in the path integral. 

Since we want to keep track of what is rigorous and what is formal, let 
us emphasize that two crucial assumptions have been made in (21) and (24): 
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(A1) The limits of differentiation and integration commute, 

~xl~(s ) (W~[A]) = W~[A] (28) 

(A2) There are no contributions from boundary terms or the measure in 
partial integrations of 8I~A~, 

D A ~  exp ~ S c s [ A ]  tr U~(s)T/ = 0 (29) 

As we will explain below, both assumptions are wrong in general. 
The result of the loop deformation can be given a rough interpretation 

as follows, which we will make more precise in the next section. Consider 
a loop "q with a transverse intersection where two (but not more) lines meet, 
i.e., for some s and t, s r t, we have "q(s) = "q(t) and "/i(s) 4= ~l(t). Let us 
assume that the effect of the operator v~glg~la(S) is to lift one of the lines 
that run through the intersection along the direction v ~ such that, by definition, 

v a , •  = ++ - , •  (30) 

Focusing on a single intersection, and assuming that at the point where the 
two loops in t~v - (tr U~(s, t) tr Un(t, s)) touch we can smooth out the comers 
such that t~• ~ q~v, we can write (26) as 

2'rriV( 1 ) 
v ~ - -  ~ •  - q , ~  - q , •  ( 3 1 )  

8 n ~ ( s )  k 

One now argues that it is a matter of proper regularization to assign a finite 
value to the 'volume element' 

V = f dt e.bcVaqqb(s)#((t)SS('q(s), "q(t)) 

say V = 1/2. 

Hence loop deformations at an intersection in the direction v a and - v  ~ 
lead to 

t~+ = 1 - t~x +-~-t~•  (32) 

( , n ' i )  'rri 
+_ = 1 + ~-~ ~• - -~ ~= (33) 
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In order to obtain a crossing change formula for knots without intersections, 
we eliminate +x and obtain 

( , Z _ ~ )  ( " r r _ ~ ) 2 ' r r i  
1 + ~+  - 1 - tb- = k qs• (34)  

In fact, this crossing change formula is to linear order in l/k exactly the 
crossing change formula for qsv = K~, (16), 

qi /Nt~ + _ q - i / N ~ _  = (q _ q-i)+= (35) 

The framing dependence of t~  can be derived by a similar argument (see 
Section 3), and is found to agree to linear order with that of Kv, (17). 

The conclusion is that, given certain assumptions, (i) we can compute 
the effect of loop deformations on (W~) in 'closed' form, (ii) we can interpret 
the result as a skein relation for t~ = (Wv), and (iii) the coefficients in the skein 
relations are to linear order in 1/k the ones that appear in Witten's identity. 

As already explained in the introduction, our goal is to explore under 
what conditions higher-order loop deformations lead to higher-order correc- 
tions in l/k that sum to the correct coefficients. To this end, let us now give 
a more precise definition of the loop deformations that take intersections apart. 

3. G E N E R A T I N G  H O M O T O P Y  T R A N S F O R M A T I O N S  

Consider the following two generators of  infinitesimal transformations 
of loops: 

D(w)tb['ql = ds wa(xl(s)) ~ *['q] (36) 

f /9(v)tb['q] = ds va(s) ~ O[rl] (37) 

The operator D(w) is the natural generator of diffeomorphisms on the space 
of loop functionals. Each point rl(s) of the loop is displaced an infinitesimal 
amount along a vector field w" E T~, and D(w) satisfies the algebra of 
diffeomorphisms, [D(w), D(w')] = D(~w(w')). Obviously, intersections of 
loops are invariant under the action of D(w), since, independently of the 
parameters s and t, aq(s) = "q(t) is moved as one single point. 

On the other hand,/5(v) generates a more general type of transformation, 
since now v a assigns a vector to each parameter value of the loop (as opposed 
to a vector to each point in the manifold). This is exactly what we need to 
deform loops from intersecting to nonintersecting. For example, we can 
choose v" to vanish everywhere along the loop except in the neighborhood 
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Fig. 2. A family of loops that defines a crossing change. 

Briigmann 

of one of  the legs of an intersection such that "q(s) is moved but "q(t) remains 
in place. 

/)(v) is the generator of homotopy transformation in loop space L. To 
be more precise, two loops are homotopic if they can be continuously 
deformed into each other. This will be the case for continuous v ~, which also 
can remove comers in loops. Smooth v a lead to smooth deformations. While 
the orbits of D(w) are curves on the three-manifold, the orbits o f / ) (v )  are 
curves in L. A curve in L is defined by a one-parameter family of loops "q,, and 

d ~ O'qa(s) 
d~ ~[n.]  = J as o ~  ~-q."(s~ , [nu]  = &v)[nul  (38) 

for v a(s) = O'q'~(s)/Ou. 
Our plan is to use/ ) (v)  as a concretization of the loop deformations of 

the previous section. For example, we can define a family of curves that 
interpolates between an overcrossing and an undercrossing (with respect to 
some preferred direction; Fig. 2). The corresponding generator we denote by 
just /9,  and from (31), 

l) 
/ )*x  = -k- *• - N tb• (39) 

With a small modification we can also define a family of loops that 
stands for introducing a twist (~ -+) into a line (1.) (Fig. 3). We obtain the 

Fig. 3. A family of loops that defines the removal of a twist by changing a crossing to 
an intersection and simultaneously shrinking the twisted part of the loop to a point. 
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correct framing factor if (in inverted order) we first make the transition from 
crossing (~ +)  to intersection (~), then shrink the loop to a comer (<),  
evaluate the path integral, and smooth the comer to ('1.). Notice that this is 
a different procedure than the one that defines the transition from t~  to qJ< [for 
which the correct result is (94)]. From (26) we derive for the corresponding 
generator/3' that 

"rri( 1) 
/3't~< = -~- N - ~ t~< (40) 

It is worth emphasizing that both generators /3 and /3' refer to an 
essentially planar representation of a localized crossing. The family of loops 
for/3 may only introduce a single crossing, and in this case the crossing can 
be made arbitrarily flat in any coordinate system. For the family of loops 
defining/3' we have in addition to require that the separation at the crossing 
and the spread in v~(s) are much smaller than the characteristic radius of 
the twist. 

In the remainder of this section we comment on the regularization of 
the volume element V and on the exponentiation of/3.  

3.1. Regular izat ion  o f  the Vo lume  E lement  

The volume element for/3(v) is 

V = f ds f dt ~abcV~(S)~lb(S)~(t) ~3('q(s), Tl(t)) (41) 

There is at least a ~(0) singularity, since the three-dimensional delta distribu- 
tion depends only on two parameters. 

Suppose we ignore the singularity for the moment. If we set va(s) = 
v~('q(s)), then V is the volume element for a deformation generated by a 
diffeomorphism D(v). Since in this case v~(s) = v~(t), the antisymmetrization 
in the tangent vectors implies that V = 0 and therefore that (W~[A]) is invariant 
under diffeomorphisms. We therefore expect that it is the regularization that 
introduces the well-known framing dependence of (W~[A]). 

There are two classes of singularities in V corresponding to the two 
classes of zeros of xl(s) - "q(t) (in coordinates). For ranges of s and t without 
intersections, rl(s) - "q(t) = 0 implies s = t. A standard regularization in 
this case is to replace one of the two integrations along "q by an integration 
around the framed loop "qf(s), which is obtained from "q(s) by displacing ~l(s) 
in some direction not parallel to the loop without introducing intersections. 
The different possibilities of framing are labeled by the linking number of 
the framed and unframed loops, which is an integer. Since by definition "q(s) 
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and "qf(t) do not intersect, we conclude that V = 0, and therefore that (W~[A]) 
is invariant under diffeomorphisms when regularized by framing. 

In the case that "q(s) has a self-intersection at So 4: to, we have V = 0, 
as before, for a framing such that "q(s) v~ "qf(t) Vs ,  t. However, we are 
interested in the situation where "q(s) is replaced by a family of curves "q~(s) 
that describe a crossing change. In the presence of a framing, the family of 
curves "qu(s) has to cross "qr(t), and therefore there does occur a singularity 
for some u. This singularity is independent of the considerations that led to 
the framing, and we prefer to discuss it in the limit in which the framing has 
been removed. (Another convenient way to combine framing with crossing 
change is to specialize the framing such that near a self-intersection the 
framed loop has to maintain an intersection with the unframed loop, e.g., for 
a loop which is planar near an intersection the direction of displacement of 
the framing must be coplanar with the tangent vectors at the intersection.) 

So let us consider the case where xl~ describes a crossing change and 
the framing has been removed. The deformations we consider are along v~(s)  
= O'q~,(s)/Ou and are localized on one leg close to a crossing. Referring to a 
particular direction, let "q_ 1 run below, "ql above, "q0 through the intersection 
at "qo(so) = "qo(to). These three cases correspond to t~_, ~+, and t~• respectively 
(compare Fig. 2). 

In order to obtain a finite answer, we define t~[-q] for the transition from 
t~• to t~+ by a 'smearing' over the strip defined by the family xl,, 

t~[xl] = du  ~['qu] (42) 

Then 

f0ff V = du  ds  d t  ~-abcVa(S)qlb(s)~c(t)~3('qu(S), xlu(t)) (43) 

The delta function can be easily removed if ~.abcva(s)'i]~ ) ~ O, since then 

~3(.qu(S), ~ . ( t ) )  = 
I <,b< va( so)~( So)~( to) [ 

~(s - So)~(t - t0)8(u - Uo) (44) 

where for our choice of v a we obtain only one term representing the sum 
over all zeros of ~qu(s) - "qu(t). 

By construction of the crossing change and by the assumption that the 
intersection is transverse, the tangent vectors and v a are indeed not coplanar. 
Therefore the final result for the volume element when regulated by strips 
is in the case of an intersection 
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1 1 for 4 -  (45) V = ~  for t~+, V -  2 

as required for the first-order argument of the preceding section. [The factor 
1/2 is due to f6dx g(x) = 1/2.] 

Since for the exponentiation of /3  we have to compute 13% we absorb 
the smearing (42) into the definition of D, i.e., each time/3 acts we perform 
an extra integration over u. 

3.2.  E x p o n e n t i a t i o n  

The generator of diffeomorphisms can be exponentiated to give finite 
diffeomorphisms connected to the identity. The analog is true for the generator 
of homotopy transformations. One way to see this is to notice that the space 
of loops inherits a natural differential structure as a space of mappings between 
two differentiable manifolds. The operator we would like to consider is 

exp(/)) ~[~1] - exp duu *[~lu] (46) 

where on the left-hand side ~1 stands for a family of loops which defines the 
displacement i n / ) .  Naturally, exp(/)) ~[~] exists only if 4[~11 satisfies an 
appropriate differentiability condition. 

The problem is that ~[~11 = [Wn[A]) does not satisfy the necessary 
condition. Consider any function f :  R --~ R. Then 

exp c f ( u ) : =  M du f(u) =f(u + c) (47) 
n=0  

only if f is in fact analytic. However, we have just shown that for the 
regularization involving a framing that we want to use, the expectation value 
of a Wilson loop is a certain step function near an intersection, 

f(u) = ( % . )  = i f  u = 0 (48)  

if u < 0  

where 4§ 4• and 4 -  are constants independent of u. 
In other words, what we would like to define is not an operator on L, 

but on L modulo diffeomorphisms. This is a nontrivial task, since the quotient 
space does not inherit a natural differential structure. A similar problem 
occurs in the construction of loop representations (Briigmann and Pullin, 
1993), since there the loop states satisfy identities deriving from identities 
among the Wilson loops, which are reparametrization invariance and the 



158 Briigmann 

Mandelstam identities. In this context, a rigorous mathematical framework 
for differential calculus is being developed (Tavares, 1993), which involves 
an extension to distributional functionals of loops. It is still unclear whether 
it is possible to treat diffeomorphism invariance in this framework. 

A natural point of view is that, given that (W~,,) is a step function in u, 
we should have expected that d/du leads to a delta function in u. This is 
precisely what we obtained in Section 3.1, but there we regulated away the 
~(u) by an integration over u, (42). This regularization is performed so that 
we can identify the first-order loop variations with the finite terms in the 
first-order expansion in 1/k. We will return to this issue in Section 5. 

These observations are, in fact, based on assumption (A1). In order to 
be able to perform the calculation (21)-(26) of the loop variations, we have 
to take the loop variations ~/~qa(s) inside the path integral. In the process, 
we break diffeomorphism invariance. If we had independent knowledge of 
the step function behavior o f f (u )  = (Wnu), then we could work completely 
on the level of distributional derivatives of f (u) .  

The approach we take here is to motivate assumption (A1) by making 
an additional assumption about the regularization of {Wnu). The problem is 
not to define (d/du)(Wn~). Notice that any step function can be obtained as 
the limit of a sequence of analytic functions. To give a concrete example, 
suppose g(u) is a step function that jumps from a to b at u = 0, and g(0) is 
finite, e.g., g(O) = (a + b)/2. Then g(u) is the limiting case, l im~0 g~(u) = 
g(u), of, e.g., 

b - a I ~  g~(u) = a + ~ ~ d u e  -x2/~2 (49) 

A well-defined exponential of d/du on step functions can be defined via 

exp c g(u) := lim exp c g~(u) = g(u + c) (50) 
e-.+0 

This is the definition we choose for (dldu){Wn,).  
The assumption is that (A1) can be combined with the regularization 

(42) such that (dldu){Wn~,) = {(dldu)Wn,). For example, for h(u) = exp g(u), 
which behaves under differentiation somewhat similar to ((d/du)W,l,) ,  this 
scheme is consistent. 

As a consequence of the above discussion one can now show that in fact 

, v  = ~ (51) 
A 

W h i l e / ) t ~  is not necessarily zero, we can define a new family of loops that 

describes moving the two loops in t~  apart (rather than lifting half a leg in 

each of them as the original/)  does). This is obvious if we choose a family 
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of loops in the plane of the tangent vectors, since then V = 0. It is less 
obvious if we consider lifting one of the loops out of the plane of the tangent 
vectors, but the generator/3 for this operation actually annihilates r as a 

calculation similar to the one in Section 2 shows. Exponentiation leads to 
(51), if we also take into account that corners of a loop may be smoothed 
out, which again can be shown by an analogous argument. 

4. F O R M A L  CALCULATION OF L O O P  VARIATIONS TO A L L  
ORDERS AND DERIVATION OF W I T T E N ' S  I D E N T I T Y  

In Section 3 we gave some detailed arguments that make the first-order 
calculation of Section 2 more rigorous; in particular, we argued that 

/)t~• = a+x + b~• (52) 

for some finite coefficients a and b. Furthermore, by the construction of 
Section 3.2 we have that 

ebd~x = t~+,  e-bt~x = qJ+ (53) 

In order to calculate the left hand side of the equations in (53), we have to 
know/)nCx, or / ) r215 Suppose that 

dA,  ) (54) 

Then (exp/) ) r  is known as a linear combination of t~x and r215 and by 
eliminating r215 in (53) we find that 

~+r - ~ _ q , _  = ~ r  ( 5 5 )  

where the coefficients are functions of a, b, c, and d. 
The point is that once we know that/3 acts as the matrix transformation 

(54), the skein relation (55) follows without further assumptions about the 
path integral. In other words, a particular type of skein relation follows 
already from a generic condition on how/3  acts. 

The reason that we present the derivation of the skein relation in such 
a general manner is that it is not obvious how one should evaluate DO• The 
main problem is that ( e x p / ) ) ~ ,  if interpreted as the finite deformation of 

the loop as in (exp/))r  is not the expectation value of Wilson loops. The 
result is (exp/))r -- (tr U~ tr U~,) + . . . .  where ~/and -/' are open paths. 

In particular, the trace of the parallel transport along an open path is not 
gauge invariant. 
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Let us therefore turn things around and ask whether there exists matrices 
/3 at all such that we obtain Witten's result, i.e., that 

OL+ = ql/N, Or_ = q- l /N,  Ot~ = q -- q - I  (56) 

It is important to notice that if so, this is a nontrivial statement, since, as we will 
see below, arbitrary choices o f / )  do not generate all possible skein relations. 

Instead of determining the ma t r ix / )  that leads to the 'correct' skein 
relation directly from the explicit formulas that exist for the exponential of 
a 2 • 2 matrix, which are subject to various conditions on the matrix, it is 
simpler and perhaps more intuitive to f ix /3  by an order-by-order analysis in 
an expansion in l / k  and then to check whether exponentiation gives the right 
result to all orders. 

The outcome of such an analysis is that for 

'rri 
(57) q = exp N + k 

there does not exist a matrix/3 that leads to Witten's result. (The adaptation 
of the coefficients fails at order l/k3.) This has to be expected, since each 
power o f / 3  produces an overall factor of "rri/k, and it is hard to see how 
these coefficients can combine to "rri/(N + k) ,  although a p r i o r i  the possibility 
of a suitable 'resummation' cannot be excluded. 

There does exist a matr ix /3  that leads to Witten's result without the 
shift in k, i.e., for 

"rri 
q = exp ~ (58) 

It is a well-known problem of certain approaches to perturbative Chern-  
Simons theory (Guadagnini et  al . ,  1990; Awada, 1990; Bar-Natan, 1990) that 
they do not reproduce the shift k ~ N + k, and our method seems to be of 
the same type. It is sometimes argued that the shift is due to an independent 
argument about the existence of the path integral-- this  is consistent since k 
appears only in one place (in the definition of  q ) - - o r  that there is no need 
for the shift (Guadagnini, 1993). 

Let us sketch the calculation. We explicitly compute the matrix/3n to find 

1 () = 0 1 t~+ ~ ~/3nqJ• + ~24-7 (59) 
n = 0  

from which we obtain the coefficients a+, c~_, and eL• in (55) up to order m. 
We try to choose a, b, c, and d such that these coefficients agree order by 
order in 1/k with (56) for 
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() = 0 1 
qX ~ . i  x + 

n=0 

for some exponent x. We find that 

first order ~ a - 

second order ~ c = 0 
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(60) 

third order ~ d = ~ + 1 - (63) 

The two choices for d turn out to be equivalent, so we pick the plus sign. 
This fixes the available freedom. 

Since 

for a 4= b (see below), we have that 

e ~ 2 1 5  = q - l / N ~ x  -I- q- l /N(q  _ 1)t~• (65) 

and the corresponding equation for e x p ( - / ) )  from q ~ q-~. The end resuk 
is the correct skein relation, (16), 

qlSNt~ + _ q - l /U~_  = (q _ q-~)+• (66) 

To arrive at Witten's identity, we also have to derive the framing depen- 
= D ,  was already defined dence of $~ (W~[A]). The appropriate generator, ~' 

in Section 3. By definition, 

e~ = ~b~+ (67) 

S inc e / ) ' $<  is proportional to $<, exponentiation is trivial and we obtain 
from (40) that 

l~,x+ = O/-I~/-L, Ij~__ = o/--l l~l  (68) 

OL = q N - I / N  (69) 

which is the correct framing relation, (17). 
What we have to show in order to derive Witten's identity is that 

tb~ = K v (70) 

where Kv is defined by (14)-(17). We just established the skein relation (16) 
and the framing relation (17). That tb~ is a regular isotopy invariant, (14), 

'rri 'rri 
b - (61) 

k N '  k 

(62) 
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follows from Section 3.1, where we argued that +v is an invariant of framed 
loops. The normalization of  t~ corresponds to a normalization of the path 
integral and can be freely specified as in (15). 

This concludes the formal derivation of Witten's identity. Linear order 
considerations led us to assumptions (A1) and (A2). If we insist that the 
exponentiation o f / )  leads to Witten's identity in the particular scheme that we 
introduced, then we are forced at third order to make the following assumption: 

(A3) We have 

/ ) ~ = T  1 - ~ (71) 

which we interpret as an assumption about regularization. The simplicity of 
the proposal lies in the fact that (A1)-(A3) reduce the derivation of Witten's 
identity to essentially three functional integrations with respect to ,qa and 
A~ and the exponentiation of  a 2 x 2  matrix. 

5. DISCUSSION 

Let us discuss (A1)-(A3) and comment on two applications of our 
method. 

�9 On (A1). In Section 3.2 we argued that to commute the limits of 
differentiation and integration makes sense for (d/du)(W~u) if we smooth out 
the step function in u. There are no conclusive arguments why one should 
regulate this way, but the construction seems natural enough. 

�9 On (A2). For a generic definition of the measure DA and the boundary 
conditions, the assumption that in a partial integration there are no extra 
terms is certainly wrong. It would seem that this issue cannot be discussed 
without invoking the machinery of standard perturbation theory to explicitly 
define a measure and a gauge fixing. However, very recently Ashtekar and 
Lewandowski (n.d.) constructed explicitly a diffeomorphism- and gauge- 
invariant measure on M/SU(N), i.e., on a suitable completion of the space of 
connections modulo gauge transformations involving distributions [see Baez 
(1993) for an extension]. This may come as a surprise and be of some 
importance for the path integral formulation, since, as generally believed, 
there do not exist such measures on ~/SU(N) (which is neither Hausdorff 
nor locally compact). 

Although the Ashtekar-Lewandowski measure (dA)A L is not the correct 
measure for our purposes, we consider the fact that such measures do exist 
as encouragement that naive manipulations of the path integral may make 
sense after all, in particular without gauge fixing. For example: 
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(i) Notice that a regulated version of 

~a['q](s) = tr U~(s) ~ (72) 
8Aa('q( s) ) 

is a self-adjoint operator with respect to (dA)AL (Ashtekar and Isham, 1992; 
Ashtekar and Lewandowski, n.d.). ~P" is the generator of diffeomorphisms 
(plus an irrelevant gauge transformation) in the connection representation of 
canonical Yang-Mills theory (Ashtekar, 1992). Let us define the Chern-  
Simons path integral in terms of (dA)AL and assume that the integrand is 
integrable. Wilson loops are integrable, but it is not clear that exp[(ik/4~)Scs] 
is integrable (which may make a regularization and renormalization neces- 
sary). Then in the calculation of loop variations in Section 2 we have that 

f (dA)A L e x p ( ~  Scs)F~b tr U~(s)T j 

; _ 4~ri (dA)AL eabcirc[~l](s) exp ~ Scs (73) 
k 

= 0 (74) 

since ~a is self-adjoint (and 7"~1 = 0). That the result is zero is actually 
consistent with the definition of (dA)AL, for which the integral over a Wilson 
loop is zero if the loop is traversed an odd number of times, so that also the 
left-hand side of (73) is expected to be zero. Hence, in this scenario partial 
integration is well defined and trivial in the sense of (A1), although the result, 
while diffeomorphism invariant, is not Witten's identity. 

(ii) Suppose that DA is a diffeomorphism-invariant measure such that 
the Chern-Simons expectation value exists. Recall the discussion of Section 
3.1, where we argued for regulating the ~(u) singularity. Suppose now that 
we do not smear over u and decide to deal with the derivative of the step 
function directly. Then since 

t~+ - t~• = du ~u t~['q,] (75) 

we would conclude from (39) that 

 i(1) 
o+- , •  T (76) 

is exact, i.e., satisfied without approximation in 1/k. The obvious conclusion 
is that the necessary corrections arise from the partial integration. The term 
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that we have neglected is 

4"rrifot f f 8 [ ( i k )  ] k du ds %bcVa(S)Clb.(S) DA ~ exp ~ Sos tr U~.(s)T j (77) 

If we assume that IDA = dA Ix(A), where 8/8A{. is self-adjoint with respect 
to dA, then we can obtain an identity for the weight Ix(A). For example, if 

8 
%bc - ~  Ix(A) = FJ~bIx(A ) (78) 

we obtain a series in 1/k, which is the feature we are looking for, but the 
result is wrong for two reasons. Witten's identity cannot be obtained from 
0• - ( l /N)0x times an overall factor, and we need a factor 1/n! for an 
exponential. If such an iteration is successful, one should also recover the shift. 

Suppose we take the point of view that there exists a diffeomorphism- 
invariant measure similar to (dA)A L for which (A1) and (A2) can be made 
rigorous by certain corrections. Then the curious fact remains that the 'mis- 
takes' we make by assuming (A1) and (A2) can be compensated by (A3). 

�9 On (A3). The result that there is a matrix/5 as in (54) that leads to 
Witten's identity is a nontrivial feature of our method since (54) cannot 
accommodate arbitrary skein relations. Let us look at a representative example 

for enericO  or2 2matricesa = (a :) it ssim leto omp teeZ  ince 

A =  C(~ 1 ~k02)C-I :::::~ e A ~-- C ( o  x eO)C -1 (79) 

if C exists. If ad - bc 4= 0 and (a - d)  2 + 4bc > 0, then a possible choice is 

C = ( k l - d  b ) C _ I _  1 ( k 2 _ ~ a  - b  ) (80) 
c k 2 - a  ' d e t C  hi  - d  

1 
hi,2 = ~ {a + d + [(a - d)  2 + 4bc] m} (81) 

Hence, 

~+ = (ale -xl - a2e-X2)/det C 

oL_ = (ale xl - a2eX2)/det C 

where al 

~• = bl(al - a2)(e M-M - eM-M)/(det C) 2 

= (~.I -- d)(~.2 - a), a2 = bc, and bl = b(Xl - d). 

(82) 

(83) 

(84) 
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Notice that for such A, one does not in general obtain a skein relation 
of the general type (Cotta-Ramusino et al., 1990) 

N , +  - ~3-Iq , -  = z ~  ( 8 5 )  

for some complex coefficients f3 and z, since in general o~+ r a s  I. At the 
same time, the coefficients cannot be made arbitrary (even if A is more spe- 
cial). 

Let us address the question of whether there is a natural interpretation 
for the particular choice of/gt~• made in (A3). There are, in fact, two natural 
suggestions for/3t~x, which, however, lead to the wrong result. One proposal 
that unfortunately fails is to just repeat the calculation of/)t~• of Section 2 
for / ) ( / )~•  The result is 

1 (tr UvTiTJUv, TiT j + tr UvTiTiU.y, TiT i) (86) (~1)~• :=/3(/N,• - 

From this it follows (or directly from/90~ with due care about the comers) that 

D, 0• = k - \  1/2 N / 2 -  1/N O= (87) 

This matrix is of the general type that we just analyzed, but the resulting 
skein relation is not even that of a knot polynomial of the type (85). There 
is no obvious reason why one should subtract out the terms leading to (A3). 

Another idea could be to postulate that 

D20~ = 0 (88) 

This amounts to mixing the limit in which ~v = t~= with the limit of 
differentiation, the idea being that/)2~• is zero gecause the loops are sepa- 
rated. Previously we smoothed out the comers always after all derivatives 
are taken. The resulting skein relation is 

q'/No+ -- q- ' /No- = N(q l/N -- q-1/N)o~. (89) 

which does fit the definition of a knot polynomial, although not Witten's 
identity. The resulting framing relations are not of the type t~_+ = (x+l o. 
Notice that c = 0 implies skein relations of the type (85), while the choice 
for d given by (A3) is distinguished, since then (x• is independent of N. 

If one decides to introduce a relative factor unequal to one in +v - +• 
that adjusts (89) to the correct result (16), then one runs into incofisistent 
framing relations. A simple check of the self-consistency of  the skein and 
framing relations are given by the Mandelstam identities. For example, for 
SU(2) matrices A and B, tr A tr B = tr AB + tr AB-I ,  which leads to 
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some simple consequences that are correct for /9  but incorrect for/)2 with 
the rescaling. 

�9 Abelian Chern-Simons theory. Assumptions (A1) and (A2) and the 
regularization may be explicitly testable in Abelian Chern-Simons theory. 
The relevant equations in this case are 

q~x = qJ,, (90) 
A 

/ )~x = 27ri +x (91) 

~_+ = q_+ZO.~ (92)  

Notice that the last equation implies the well-known result that all the informa- 
tion of t~ is in w(',/). In particular, it would be interesting to find out whether 
there exists a direct relation to perturbation theory (e.g., Coste and 
Makowka, 1990). 

�9 Skein relations for intersections. As mentioned in the introduction, 
the extension of knot invariants to intersecting loops is of interest in quantum 
gravity. From (65) we obtain immediately the skein and 'framing' relations 
for intersections, 

qlm(1 - q-I)t~+ - q-lm(1 - q)~_ = (q - q-l)d~x (93) 

qN(1 - q-~) - q-N 0 - q) 
~ = q _  q-I ~ (94) 

Independent of Witten's identity, a two-variable version of the Jones polyno- 
mial for intersecting loops, F~(q, a), can be constructed from the braid group 
with intersections (Gambini, 1992; Brtigmann et al., 1992b). Skein relation 
(93) corresponds for N = 2 precisely to the choice a = 1 - q- 1 in F.~(q, a). 
The functional d~• is therefore well defined in its own right, and it is not just 
a meaningless variable that is introduced for purely technical reasons and 
that has to be eliminated from the relation between ~+, t~_, t~• and t~x. 

What we also would like to point out is that these relations are nontrivial 
extensions of the linear order results, and have to be contrasted with the 
defining relations of the Vassiliev invariants. [Their relationship is discussed 
in Baez (1992) and Kauffman (n.d.).] To linear order we have qJ• = �89 + 
4-) + O(1/k2) and t~  = t~, + O(1/kZ). On the other hand, the characteristic 
relation for intersections of the Vassiliev invariants is V• = V+ - V_ (no 
k dependence). 

In conclusion, loop deformations in (Wv[A]) allow us to derive skein 
relations for (W~[A]) that are to linear order in 1/k that o1~ Kv. The necessary 
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assumptions (A1) and (A2) are supported by results in perturbation theory, 
and by the fact that we obtain the correct answer. A novel aspect of the 
construction is that we define a generator of  loop deformations that can be 
exponentiated. The final result depends on assumption (A3) for/)~, , ,  which 

A 

is perhaps less well founded than (A 1) and (A2), but gives the correct answer 
to all orders. What we would like to find is some further evidence for (A3), 
say from an explicit regularization. 

The heuristic level of  our discussion does not allow us to decide whether 
a rigorous proof of Witten's identity can be constructed from (A1)-(A3). On 
the other hand, we find it remarkable that all the uncertainty about the measure 
DA can be condensed into such a simple set of assumptions. 
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